Lompat ke konten Lompat ke sidebar Lompat ke footer

Contoh Soal dan Pembahasan Tentang Integral Tak Tentu Fungsi Aljabar

Contoh Soal dan Pembahasan Tentang Integral Tak Tentu Fungsi Aljabar - Integral merupakan anti turunan atau kebalikan dari turunan yang berfungsi untuk menentukan daerah, volume, titik pusat, dan lainnya. Kalau suatu fungsi f(x) dibalik menjadi f’(x) maka itu merupakan turunan. Nah, jika f’(x) dibalik lagi menjadi f(x), maka itu merupakan integral. Integral merupakan operasi kebalikan dari diferensial atau biasa disebut juga dengan antidiferensial. Salah satu bentuk integral yakni integral tak tentu. 

Integral tak tentu bisa dikatakan sebuah fungsi baru yang memiliki turunan dari fungsi asli. Adapun cara menghitung soal integral tak tentu adalah dengan rumus berikut ini.Pada artikel ini kita akan membahas lebih mendalam materi Integral Tak Tentu Fungsi Aljabar. Pada pengertian integral, misalkan fungsi $ f(x) \, $ adalah turunan dari fungsi $ F(x) + c \, $ , maka dapat kita tulis bentuk integralnya : $ \int f(x) dx = F(x) + c $ . Pada artikel ini juga akan dibahas sifat-sifat integral tak tentu.

Rumus Integral Fungsi Aljabar
 
Untuk $ n $ bilangan rasional dengan $ n \neq - 1$, dan $ a, c $ adalah bilangan real maka berlaku aturan:
i). $ \int x^n dx = \frac{1}{n+1}x^{n+1} + c $
ii). $ \int ax^n dx = \frac{a}{n+1}x^{n+1} + c $

Khusus untuk pankatnya $ - 1 \, $ maka berlaku aturan :
 
i). $ \int x^{-1} dx = \int \frac{1}{x} dx = \ln x + c $
ii). $ \int ax^{-1} dx = \int \frac{a}{x} dx = a \ln x + c $
dengan fungsi $ \ln x \, $ dibaca "len $ x $" yang sama dengan fungsi logaritma dengan basis $ e = 2,718... $ 

Contoh soal integral fungsi aljabar :
1). Tentukan hasil integral dari bentuk berikut :
a). $ \int x^3 dx $
b). $ \int 6x^3 dx $
c). $ \int \frac{3}{x} dx $
d). $ \int \sqrt{x} dx $
e). $ \int 5\sqrt[3]{x^2} dx $
f). $ \int x^2.\sqrt[3]{x^2} dx $

Penyelesaian :
*). Kita langsung gunakan rumus integral fungsi aljabar di atas.
*). Kita membutuhkan sifat eksponen :
$ \begin{align} a^{m+n} = a^m.a^n, \, \sqrt{a} = a^{\frac{1}{2}} \end{align} \, $ dan $ \begin{align} \, \sqrt[n]{a^m} = a^\frac{m}{n} \end{align} $
a). $ \int x^3 dx , \, $ artinya $ n = 3 $
$ \int x^3 dx = \frac{1}{3+1}x^{3+1} + c = \frac{1}{4}x^4 + c $.

b). $ \int 6x^3 dx , \, $ artinya $ a = 6, n = 3 $
$ \int 6x^3 dx = \frac{6}{3+1}x^{3+1} + c = \frac{6}{4}x^4 + c = \frac{3}{2}x^4 + c $.

c). $ \int \frac{3}{x} dx , \, $ artinya $ n = -1 $
$ \int \frac{3}{x} dx = \int 3x^{-1} dx = 3 \ln x + c $

d). $ \int \sqrt{x} dx = \int x^\frac{1}{2} dx , \, $ artinya $ n = \frac{1}{2} $
$ \begin{align} \int \sqrt{x} dx & = \int x^\frac{1}{2} dx \\ & = \frac{1}{\frac{1}{2} + 1 } x^{\frac{1}{2} + 1} + c \\ & = \frac{1}{\frac{3}{2}} x^\frac{3}{2} + c \\ & = \frac{2}{3}x^\frac{3}{2} + c \\ & = \frac{2}{3}x^{1 + \frac{1}{2} } + c = \frac{2}{3}x^1.x^\frac{1}{2} + c \\ & = \frac{2}{3}x\sqrt{x} + c \end{align} $
Jadi, hasil $ \int \sqrt{x} dx = \frac{2}{3}x^\frac{3}{2} + c = \frac{2}{3}x\sqrt{x} + c $

e). $ \int 5\sqrt[3]{x^2} dx = \int 5 x^\frac{2}{3} dx , \, $ artinya $ n = \frac{2}{3} $
$ \begin{align} \int 5\sqrt[3]{x^2} dx & = \int 5 x^\frac{2}{3} dx \\ & = \frac{5}{\frac{2}{3} + 1} x^{\frac{2}{3} + 1} + c \\ & = \frac{5}{\frac{5}{3} } x^{\frac{5}{3} } + c \\ & = 5 . \frac{3}{5} x^{\frac{5}{3} } + c \\ & = 3 x^{\frac{5}{3} } + c \\ & = 3 x^{1 + \frac{2}{3} } + c \\ & = 3 x^1.x^{ \frac{2}{3} } + c \\ & = 3 x\sqrt[3]{x^2} + c \end{align} $
Jadi, hasil $ \int 5\sqrt[3]{x^2} dx = 3 x^{\frac{5}{3} } + c = 3 x\sqrt[3]{x^2} + c $

f). $ \int x^2.\sqrt[3]{x^2} dx = \int x^2.x^\frac{2}{3} dx = \int x^{2 + \frac{2}{3}} dx = \int x^\frac{8}{3} dx , \, $ artinya $ n = \frac{8}{3} $
$ \begin{align} \int x^2.\sqrt[3]{x^2} dx & = \int x^\frac{8}{3} dx \\ & = \frac{1}{\frac{8}{3} + 1} x^{\frac{8}{3} + 1} + c \\ & = \frac{1}{\frac{11}{3} } x^{\frac{11}{3} } + c \\ & = \frac{3}{11} x^{\frac{11}{3} } + c \\ & = \frac{3}{11} x^{3 + \frac{2}{3} } + c \\ & = \frac{3}{11} x^3 . x^{ \frac{2}{3} } + c \\ & = \frac{3}{11} x^3 \sqrt[3]{x^2} + c \end{align} $
Jadi, hasil $ \int x^2.\sqrt[3]{x^2} dx = \frac{3}{11} x^{\frac{11}{3} } + c = \frac{3}{11} x^3 \sqrt[3]{x^2} + c $

Sifat-sifat Integral Tak Tentu
 
Untuk memudahkan dalam mengerjakan integral, sebaiknya kita harus menguasai juga sifat-sifat integral tak tentu sebagai berikut :
 
1). $ \int k dx = kx + c \, $ dimana $ k \, $ adalah suatu konstanta
2). $ \int k f(x) dx = k \int f(x) dx $ (konstanta bisa dikeluarkan terlebih dahulu).
3). $ \int [f(x) + g(x) ] dx = \int f(x) dx + \int g(x) dx $
4). $ \int [f(x) - g(x) ] dx = \int f(x) dx - \int g(x) dx $

Catatan :
 
*). Untuk sifat (3) dan (4), jika ada beberapa suku suatu fungsi, maka masing-masing suku bisa diintegralkan langsung.
*). Jika ada bentuk perkalian fungsi atau pembagian fungsi, maka tidak bisa diintegralkan langsung, tetapi harus dijabarkan terlebih dahulu sehingga terbentuk fungsi $\, ( ax^n + bx^m + cx^k + .... ) $ , setelah itu baru masing-masing suku kita integralkan.

 Contoh soal :
 
2). Tentukan hasil integral berikut ini :
a). $ \int 3 dx $
b). $ \int 3x^5 dx $
c). $ \int (x^2 + x) dx $
d). $ \int (x^2 - x) dx $
e). $ \int (x^3 - 2x + 5) dx $
f). $ \int (x^2+2)(2x-3) dx $
g). $ \int \frac{x^3+2x^2-1}{3x^2} dx $
h). $ \int \frac{x+4}{\sqrt{x}} dx $
i). $ \int (\sqrt{x} - \frac{1}{\sqrt{x}})^2 dx $

Penyelesaian :
 
a). $ \int 3 dx = 3x + c \, $ (sifat 1)

b). berdasarkan difat (2) :
$ \int 3x^5 dx = 3 \int x^5 dx = 3 . \frac{1}{5+1}x^{5+1} + c = 3 . \frac{1}{6}x^6 + c = \frac{1}{2}x^6 + c $

c). berdasarkan sifat (3) :
$ \int (x^2 + x) dx = \int x^2 dx + \int x dx = \frac{1}{2+1}x^{2+1} + \frac{1}{1+1}x^{1+1} + c = \frac{1}{3}x^3 + \frac{1}{2}x^2 + c $

d). berdasarkan sifat (4) :
$ \int (x^2 - x) dx = \int x^2 dx - \int x dx = \frac{1}{2+1}x^{2+1} - \frac{1}{1+1}x^{1+1} + c = \frac{1}{3}x^3 - \frac{1}{2}x^2 + c $

e). masing-masing suku langsung diintegralkan :
$ \begin{align} \int (x^3 - 2x + 5) dx & = \int x^3 dx - \int 2x dx + \int 5 dx \\ & = \frac{1}{3+1}x^{3+1} - \frac{2}{1+1}x^{1+1} + 5x + c \\ & = \frac{1}{4}x^4 - \frac{2}{2}x^2 + 5 + c \\ & = \frac{1}{4}x^4 - \frac{2}{2}x^2 + 5 + c \\ & = \frac{1}{4}x^4 - x^2 + 5 + c \end{align} $

f). Jabarkan dulu bentuk perkaliannya, kemudian integralkan masing-masing suku :
$ \begin{align} \int (x^2+2)(2x-3) dx & = \int ( 2x^3 - 3x^2 + 4x - 6 ) dx \\ & = \frac{2}{4}x^4 - \frac{3}{3}x^3 + \frac{4}{2}x^2 - 6x + c \\ & = \frac{1}{2}x^4 - x^3 + 2x^2 - 6x + c \end{align} $

g). Sederhanakan terlebih dahulu, kemudian integralkan masing-masing suku :
Sifat eksponen : $ \frac{1}{a^n} = a^{-n} , \, \frac{a^m}{a^n} = a^{m-n} $ .
$ \begin{align} \int \frac{x^3+2x^2-1}{3x^2} dx & = \int \frac{x^3}{3x^2}+\frac{2x^2}{3x^2}-\frac{1}{3x^2} dx \\ & = \int \frac{x}{3 }+\frac{2 }{3 }-\frac{1}{3x^2} dx \\ & = \int \frac{1}{3}x +\frac{2 }{3 }-\frac{1}{3 } x^{-2} dx \\ & = \frac{1}{3}. \frac{1}{1+1}x^{1+1} +\frac{2 }{3 }x-\frac{1}{3 }. \frac{1}{-2+1} x^{-2+1} + c \\ & = \frac{1}{3}. \frac{1}{2}x^2 +\frac{2 }{3 }x-\frac{1}{3 }. \frac{1}{- 1} x^{- 1} + c \\ & = \frac{1}{6}x^2 +\frac{2 }{3 }x + \frac{1}{3 } . \frac{1}{x} + c \\ & = \frac{1}{6}x^2 +\frac{2 }{3 }x + \frac{1}{3 x} + c \end{align} $

h). Sederhanakan terlebih dahulu, kemudian integralkan masing-masing suku :
Sifat eksponen : $ \frac{1}{a^n} = a^{-n} , \, \frac{a^m}{a^n} = a^{m-n} , \, \sqrt{a} = x^\frac{1}{2} $ .
$ \begin{align} \int \frac{x+4}{\sqrt{x}} dx & = \int \frac{x+4}{\sqrt{x}} dx \\ & = \int \frac{x}{\sqrt{x}} + \frac{4}{\sqrt{x}} dx \\ & = \int \frac{x}{x^\frac{1}{2}} + \frac{4}{x^\frac{1}{2}} dx \\ & = \int x^{1-\frac{1}{2}} + 4x^{-\frac{1}{2}} dx \\ & = \int x^\frac{1}{2} + 4x^{-\frac{1}{2}} dx \\ & = \frac{1}{\frac{1}{2} + 1} x^{\frac{1}{2} + 1} + \frac{4}{-\frac{1}{2} + 1}x^{-\frac{1}{2} + 1} + c \\ & = \frac{1}{\frac{3}{2} } x^{\frac{3}{2} } + \frac{4}{\frac{1}{2} }x^{\frac{1}{2} } + c \\ & = \frac{2}{3} x^{\frac{3}{2} } + 4 . \frac{2}{1} \sqrt{x } + c \\ & = \frac{2}{3} x^{\frac{3}{2} } + 8 \sqrt{x } + c \\ & = \frac{2}{3} x \sqrt{x } + 8 \sqrt{x } + c \end{align} $

i). Sederhanakan terlebih dahulu, kemudian integralkan masing-masing suku :
Sifat eksponen : $ \frac{1}{a^n} = a^{-n} , \, \frac{a^m}{a^n} = a^{m-n} , \, \sqrt{a} = x^\frac{1}{2} $ .
$ \begin{align} \int (\sqrt{x} - \frac{1}{\sqrt{x}})^2 dx & = \int (\sqrt{x} - \frac{1}{\sqrt{x}})(\sqrt{x} - \frac{1}{\sqrt{x}}) dx \\ & = \int (\sqrt{x})^2 - 2. \sqrt{x}. \frac{1}{\sqrt{x}} + \left( \frac{1}{\sqrt{x}} \right)^2 dx \\ & = \int x - 2 + \frac{1}{x} dx \\ & = \frac{1}{2}x^2 - 2x + \ln x + c \end{align} $

Pembuktian Rumus Integral Tak Tentu Fungsi Aljabar *).  kita ingat kembali rumus turunan dasar fungsi aljabar yaitu :
 
$ y = x^n \rightarrow y^\prime = nx^{n-1} \, \, $ dan $ \, \, y = \ln x \rightarrow y^\prime = \frac{1}{x} $.

*). Sesuai dengan pengertian integral, maka bentuk $ \int f(x) dx = F(x) + c \, $ benar jika berlaku turunan fungsi $ ( F(x) + c ) $ adalah $ f(x) $, artinya kita tinggal membuktikan $ \frac{d}{dx}(F(x) + c) = f(x) \, $ dimana bentuk $ \frac{d}{dx}(F(x) + c) \, $ adalah turunan dari $ ( F(x) + c ) $.
 
*). Pembuktian rumus pertama : $ \int x^n dx = \frac{1}{n+1}x^{n+1} + c $
$ \begin{align} \frac{d}{dx} \left( \frac{1}{n+1}x^{n+1} + c \right) & = (n+1) . \frac{1}{n+1}x^{(n+1) -1 } \\ & = x^n \end{align} $
Jadi terbukti bahwa $ \frac{d}{dx} \left( \frac{1}{n+1}x^{n+1} + c \right) = x^2 $ .

*). Pembuktian rumus kedua : $ \int ax^n dx = \frac{a}{n+1}x^{n+1} + c $
$ \begin{align} \frac{d}{dx} \left( \frac{a}{n+1}x^{n+1} + c \right) & = (n+1) . \frac{a}{n+1}x^{(n+1) -1 } \\ & = ax^n \end{align} $
Jadi terbukti bahwa $ \frac{d}{dx} \left( \frac{a}{n+1}x^{n+1} + c \right) = ax^2 $ .

*). Pembuktian rumus ketiga : $ \int \frac{1}{x} dx = \ln x + c $
$ \begin{align} \frac{d}{dx} \left( \ln x + c \right) & = \frac{1}{x} \end{align} $
Jadi terbukti bahwa $ \frac{d}{dx} \left( \ln x + c \right) = \frac{1}{x} $ .

*). Pembuktian rumus keempat : $ \int \frac{a}{x} dx = a\ln x + c $
$ \begin{align} \frac{d}{dx} \left( a\ln x + c \right) & = a . \frac{1}{x} = \frac{a}{x} \end{align} $
 
Jadi terbukti bahwa $ \frac{d}{dx} \left( \ln x + c \right) = \frac{a}{x} $ .

Posting Komentar untuk "Contoh Soal dan Pembahasan Tentang Integral Tak Tentu Fungsi Aljabar"