Metafora Gunung ES dalam RME
Berhubungan dengan proses
matematisasi vertikal dan horizontal dalam hubungannya dengan tingkat aktivitas pemodelan dalam PMR, Frans Moerlands (Sugiman, 2011:8) mendiskripsikan
tipe pendekatan realistik dalam gagasan gunung es (iceberg) yang mengapung di tengah laut.
Baca Juga: Pendidikan Matematika Realistik Standar Mutu PMRI Prinsip Pembelajaran Matematika Realistik
Proses pembentukan gunung es di laut selalu dimulai dari bagian dasar di bawah permukaan laut dan seterusnya akhirnya terbentuk puncak gunung es yang muncul di atas permukaan laut. Bagian dasar gunung es lebih luas dari pada puncaknya, dengan demikian konstruksi gunung es tersebut menjadi kokoh dan stabil. Dalam model gunung es terdapat empat tingkatan aktivitas, yakni :
Baca Juga: Pendidikan Matematika Realistik Standar Mutu PMRI Prinsip Pembelajaran Matematika Realistik
Proses pembentukan gunung es di laut selalu dimulai dari bagian dasar di bawah permukaan laut dan seterusnya akhirnya terbentuk puncak gunung es yang muncul di atas permukaan laut. Bagian dasar gunung es lebih luas dari pada puncaknya, dengan demikian konstruksi gunung es tersebut menjadi kokoh dan stabil. Dalam model gunung es terdapat empat tingkatan aktivitas, yakni :
(1) Orientasi lingkungan secara matematis
Pada tahap ini anak akan
dibiasakan menyelesaikan masalah sehari-hari tanpa harus mengaitkan secara
tergesa-gesa pada matematika formal. Anak akan memodelkan secara situasi
permasalahan matematika yang berhubungan dengan konteks yang diberikan. Kegitan
matematis yang bersentuhan dengan berbagai konteks real yang menuju pada suatu
konsep matematika akan menjadi landasan bagi siswa dalam tingkatan selanjutnya.
(2) Model alat peraga
Pada tahap ini menekankan
pada kemampuan siswa untuk memanipulasi alat peraga untuk memodelkan situasi
pada beragam konteks pada tahap sebelumnya. Tahap ini sangat berguna untuk pemahaman prinsip-prinsip
matematika sebelum menggunakan bahasa matematika.
(3) Pembuatan pondasi (building stone)
Pada aktivitas ini
aktivitas siswa mengarah pada pemahaman matematika dengan menggunakan model
untuk matematika formal.
(4) Matematika formal.
Pada tahap ini, anak
sudah dapat menggunakan konsep atau prosedur matematika formal.Contoh gunung es
untuk
pembelajaran penjumlahan dan pengurangan pecahan yang dilaksanakan di
Kelas IV SDK Bomari Langa NTT (Sebo Bito, 2013) tertera pada Gambar
berikut.
Pada awalnya, siswa melakukan aktivitas berdasarkan permasalah kontekstual dengan beragam konteks, selanjutnya memodelkan masalah berdasarkan pemahaman mereka tentang situasi permasalahan kontekstual yang diberikan. Pada tahap berikutnya siswa menggunakan alat peraga manik manik dan kartu pecahan sebagai model dari beragam situasi (model of) masalah kontekstual yang diberikan pada tahap orientasi masalah. Selanjutnya pada tahap pembuatan pondasi, gambaran siswa tentang permasalahan menggunakan alat peraga membawa mereka menuju gagasan penggunaan garis bilangan sebagai model untuk (model for) matematika formal. Pada akhirnya siswa dapat menyelesaikan permasalahan penjumlahan dan pengurangan pecahan dengan menggunakan prosedur formal.
Daftar Pustaka :
Sugiman.(2011). Peningkatan Pembelajaran Matematika dengan menggunakan Pendekatan Matematika Realistik. Tersedia di http://staff.uny.ac.id/ diakses 17/12/2012
Sebo Bito, G. (2013).Eksplorasi Pembelajaran Operasi Pecahan Siswa SD Menurut Teori Gravemeijer di Kabupaten Ngada-NTT. Yogyakarta, Tesis UNY, Tidak diterbitkan.
Posting Komentar untuk "Metafora Gunung ES dalam RME"
Pembaca boleh bebas berkomentar selama isi komentar berhubungan dengan isi postingan, menggunakan kalimat yang santun dan berguna bagi pengembangan blog ini.